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1 Introductio‘n

Introduction to quantum computing and
number theory is given. Shor‘s algorithm for
factoring integers is described.

Factoring problem.

Every integer N is umquely decomposable 1nto
a product of prime numbers:

6=2-3,3=57,..

However we do not know efficient (i.e.
polynomial in the number of operations)

- classical algorithms for factoring.

Given a large integer N, one has to find
efficiently such integers p and ¢ that

N = pq

An algorithm of factoring the number N is
efficient if the number of elementary
arithmetical operations which it uses for large
N is bounded by a polynomial in n where

n = log N is the number of digits in N.




The most naive factoring method: just divide
N by each number.from 1 to VN.

This requires at least v/ N operations. Since
A/ N = 2%— log N

is exponential in the number of digits n = log N
in N this method is not an efficient algorithm.

There is no known efficient classical algorithm

for factoring but the quantum polynomial
algorithm does exist.

The best classical factoring algorithm is the
number field sieve:

exp(en'/? (log n)*/®)

P. Shor has found a quantum algorithm which
takes

O(n? log n log log n)
operations.

Factorization of N can be reduced to finding
the order of an arbitrary element m in the
multiplicative group of residues modiilo N;



L.

that is the least integer r such that

m’ = (mod‘N)

To factorize N it is enough to find the order r
of m.

Shor‘s algorithm for finding the order consists

of 5 steps:

1. Preparation of quantum state.
2. Modular exponentiation.

3. Quantum Fourier ’pransform.

4. Measurement.

- 5. Computation of the order at the classical

computer.

2 Algorithms

Algorithm is a precise formulation of doing

Euclid’s algorithm for finding the greatest
common divisor of two numbers.




N

Euclid’s algorithm. Given two positive
integers m and n, find their greatest common
divisor, i.e. the largest positive integer which

divides both m and n. Here m and n are

interpreted as variables Wwhich can take specific
values. m > n

1. Divide m by n and let r be the remainder.
2. If r = 0, the algorithm halts; n is the answer.

3. Replace the value of variable m by the
current value of variable n, also replace the
value of variable n by the current value of
variable r and go back to Step 1.

Input is : m and n.

Output: n in Step 2, which is the greatest
common divisor of two given integers.

Exercise. Prove that the outptt of Euclid’s
algorithm is indeed the greatest common
divisor.

 Hint: After Step 1, we have m = kn + r, for
some integer k.



Classical and quantum algorithms. |
Turing machines. Circuits.

Classical circuits and classical Turing machines
are mathematical models of classical computer.

Quantum circuits and quantum Turing

machines are mathematical models of quantum
computer. D. Deutsch (1985). |

General Notion of Algorithm.
Two sets I and O. I - input, O - output.

I,OCS

Gates. G = {gl, vy Gr}, i 1S — S.

Example: logical operations AND, OR and
NOT.

f:I1—-0.

Problem: To find a sequence of gates

A = {gi,, Giz» - i, } Which computes the
function f.

f(2) = gi 9is--8i, (), TET
Ais the algorithm.



Yoy e . .
Cofnputational sequénce,";zo, T1;...: Lo =2,

T1 = g5, (20), .., Ty = gi, (Tm_1), ...
Computational sequence terminates in k steps
if k£ is the smallest integer for which zg is in O.
In this case it produces the output y = z) from

Z.

More general approach: functions g; and f are
not defined everywhere, not every |
computational sequence terminates. Moreover,
the transition z,, = g;_ (z,,—1) takes place
with a certain probability (random walk) and
the output space O is a metric space with a

metric p.

An algorithm makes an approximate
computation of a function f(z) with a certain
probability if one gets a bound p(f(z),zr) < e.

The algorithm for the computation of the
function f by using the prescribed set of gates
is given by the data

/ {SaI’O,GaAof}
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The set S for the classical Turing machine: all

1 configurations of the Turing machine, the gates
g; form the transition function. For a classical
circuit the gates: logical operations AND, OR
and NOT. For quantum circuit and for
quantum Turing machine the set S: the Hilbert

space of quantum states, the gates g; : some
unitary matrices and projection operators.

Computational complexity.

For input z let ¢t(z) = k be the number of steps
until the computational sequence terminates.
The computational time T°

T(n) = max {t(z) :| z |=n}

where | z.l is the length of the description of z.

For input z let s(z) be the number of different
elements in the computational sequence
To = T,1,.... The computational space 5 :

S(n) = mg{s(r) : 8(z) = n}
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3 Quantum Circuits |

Quantum Mechanics. ,
e Quantum mechanics is a statistical theory.

e Every quantum system assigns a Hilbert
space.

Vectors in the Hilbert space represent states of
the quantum system, self-adjoint operators
represent observables.

C™ with the scalar product
n
(z ) w) - Z Ziw;
1=1

Probability to observe the state ¢ given the

state ¢ is |(v, )|, |

Boolean Functions.

Quantum circuits are quantum analogues of the

classical circuits computing Boolean functions.
B ={0,1}

f:B" = B™
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A classical circuit can be represented as a
directed acyclic graph.

A quantum circuit is a sequence of unitary
matrices of the special form associated with a

(hyper)graph.
Computational basis in n— qubit space. -
C? qubit. |
Computational basis
1 » [0

€0 = ) €1 =
0 1

The index = 0,1 in the basis (e,) is
interpreted as a Boolean vana.ble Dirac
notations

ex =|x>.
C2@ C2..@ C? = C?" is the n— qubit space.
Computational basis {es, ® €, ® .. ®eﬁ}

where z; = 0, 1.

€z, D€y ® ... Q€p, =| Xy, ..., Ty > .

10
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If 1 is a vector of the unit length in C2" then

the probability to observe the Boolean
variables z1, ..., z, in the state 9 is

I(exl Qez, ®...0 e$n7¢>|2

|<:1:n,...,a:1 | Y > |2. |

Definition. A quantum circuit @ is defined by
the following set of data:

Q=A{H,U,G, f}

where the Hilbert space H is the n— qubit
space H = C?", U is a unitary matrix in H,
G = {W,...,V,.} is a finite set of unitary

~ matrices (quantum gates) and f is a classical

Boolean function f : B¥ — B™. Here
B = {0,1} and one assumes k < n and m < n.
The matrix U should admit a representation as

a product of unitary matrices generated by the
quantum gates.

The dimension of unitary matrices V; normally
is less then 2" and usually one takes matrices
Vi which act in the 2— or in 3— qubit spaces.



Fix the computational basis

| {€z, ® €z, ® ... ®e€y, } in H. Define an
extension of the matrix V; to a matrix in the
space H.

If V; is an [ x I matrix then we choose I vectors
from the computational basis and denote them
as o = {hy, ..., i }. Define a unitary
transformation V( *) in #. The action of V( )

on the subspace of  spanned by vectors
{h1, ..., i} equals to V;, the action of V( ) o
the orthogonal subspace equals to o

U = Vedyle) yle) (1)
Quantum Gates.
G = {1, Va}

Vi is the 2 X 2 matrix of rotations to an
irrational angle 6

Vzlstheéixématnxacﬁngt@thebmm
C2®C2as (z,y=0,1)

Valz,y >= |z, 2 + y (mod 2) >v
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The matrix V5 is the CNOT-operation. The
‘matrices V; and Vs gives an example of

universal quantum gates. By using these gates

one can construct a unitary matrix of the form
(1) which is close as we wish to any unitary
matrix in C2".

Exercise. Let Sp = {€2™%"} be a set of points

on the unit circle. Here 0 is a fixed irrational

number and n = 0, £1, +2, ... Prove that the
set Sp is a dense set on the umt c1rcle

Quantum circuit Q) computes the Boolean
function f: B — B™ if the following bound is
valid

1< 0, f(z1,....z) | U | 21,000, 25,0 >2>1 ¢
for all z,,...,2;, and some fixed 0 << 1/2.

L is the computational time of the quantum

Families of quantum circuits. The
computational power of a family of quantu
circuits should be equivalent to quantiim
Turing machine.
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Requirement of uniformity. A family of
‘quantum‘circuits is-called uniform if its design
is produced by a polynomial time classical
computer and if the entries in the unitary
matrices of the quantum’circuits are

computable numbers.

4 Quanfum Fourier

Transform

C2@ C2..9 C? = C?
- Quantum Fourier transform (q = 2%):
72 ;} ez’""b/"lb >
la >= |ag_y, ..o >, |b>=|by_y,....b0¢ >
Binary representations
a=ag+ai2+..+a,-12*"1, a, ;‘9,1
b=bo=l=bl2=|=...+bg;12‘=1, b=0,1

Fgla >= —




Example. Hadamard‘s Gate.

For L = 1 the quantum Fourier transform is
the Hadamard gate, F5 = H.

H|0 >= \/%.(m > 4|1 >),
H|l >= 71—§(|0 > —|1>).

The Hadamard gate to the s-qubit space as
Hi=I19.QH®..0I, j=1,2,..,5s.

The quantum Fourier transform is
multiplication by an ¢ X ¢ unitary matrix,

 where the z,y matrix element is e2*i®¥/q,

Naively, O(¢*) elementary operations.
However, it can be implemented by means only
O((log q)?) elementary operations.

Important factorized (unentangled) form:

1 L ps=1
- i@g2f="
F23'08=1, tasy a@ >=_ ¢2—§(|0 > +€ ,1 >)

(/0 >+ 15)® .0 (|0 > +“=[1>)
where ¢, = 2ra/2%.




- Quantum Fourier transform can be written as a

product of matrices generated by Hadamard's
gates and 4 X 4 matrix B,

e"“/2|a1,a0 >, ifa; =a9= 1,
Bla’laao >= : .
| la1, ag >, otherwise.

Bj,klas_l, oy Ay veey @y oeey Qg >

Bk _ - |
= e'"*~da,_1,..., K, ...y Qj, ..., Qo >

where
(eir/2)(k—j)’ if a; =ag =1,
1, otherwise.

er-i —

Theorem 4.1. Quantum Fourier transform in
the space C2° can be represented as a product
of O(s?) operators H; and B; ;.

— A S

Thaﬁethelsaquantumm&

lementation of quantum Fourier transforms
whxchmpdymnlathefw&&e
Input size.
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Black Holes, Information, Coherence

Wheeler, Hawking, ‘t Hooft, Susskind,
Strominger,... |

Hawking: Black holes and quantum
mechanics cannot coexist.

Black holes swallow information and
then dissapear without releasing it.

Compare: EPR-paradox. Entangled

states. Bell's theorem.

ioo QUANTUM TEBLEPORTATION AND
BLACK HOLE COHEREWCE /1N FORMATIOL

LoSs
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Bell’s Theorem (1964)

cos(t — s) # Exuys

if 2; = z4(w), Ys = ys(w) stochastic processes
such that

ze(w)| <1, |ys(w)| < 1.

Bell's theorem states that some quantum
CW' can not be represented by classical
- correlations of se Ea.ratedwrgggl%varmbﬁ It
has been interpreted as incompatibility of the
requirement of locality with quantum

(Q, X, P) - Probability Space
cos(t = s) 3 f 24 (w)ys(w)dP(w)
Q .

if
| W) €1, Jys(w)| < L.



Theorem -

If fi, f2,91, g2 random variables on (2, X, P)
such that ‘

lfiw)g;W)| <1, i,j=1,2

and | |
P;; = Efig;, %,3=12.
Then

|Piy — Pia| + |Pa1 + Paa| < 2.

R

Proof. P11 - Pu = |

= Efinn—Ef19: = E(ism(1£f202)) - E(frg2(1=fagu)),

|Piy—Pia| < E(1+ faga)+E(1+fagy) = 2+(Pas+Pys ).
x| <2y = |g+|W<2 |

nequality):

[Py — Pra| + |Pn + Pra| <2




Quantum Mechanics

Consider a pair of spin one-half particles
formed in the singlet spin state and moving
freely in opposite directions (EPR pair).
o——-D——0 |
A B PARADOX
If one neglects the space part of the wave

function then the quantum mechanical
correlation of two spins in the singlet state

'@bspt'n 1S

Dspin(a, b) = ('d)spinlo' ra®o- bl"bspin) =-a-b

- Here a and b are two unit vectors in
three-dimensional space and o = (01,03, 03)
are the Pauli mutrices. Since

—a b= cos(t - s)

Bell’s theorem states that the function
B,pin(a, b) can not be represented in the

Dpin(a,b) # Ex(a)y(b)
where z(a) and y(h) are random fields on the




two dimensional sphere.

Quantum Correlation # Classical Correlation

It is now widely accepted, as a result of Bell’s
theorem and relited experiments, that
Einstein’s "local realism” must be rejected.

Evidently, the very formulation of the problem
of locality in quantum mechanics is based on
ascribing a special role to the position in

- ordinary three-dimensional space. It is rather
surprising therefore that the space dependence
of the wave fun. tion is neglected in discussions
of the problem of locality in relation to Bell’s
inequalities. Actually it is the space part of the
wave function which is relevant to the
consideration of the problem of locality.




We point out that the space part of the wave

function leads to an extra factor in quantum

correlation and as a result the ordinary proof of

Bell’s theorem fails in this case. We present a

criterium of locality (or nonlocality) of
quantum theory in a realist model of hidden
variables. We argue that predictions of
quantum mechanics can be consistent with
Bell’s inequalities for Gaussian wave functions
and hence Einstein’s local realism is restored in
this case. |

ThlS leads a.lso to a new approach to problems
~in quantum information theory such as
quantum cryptography, quantum teleportation
and quantum computing. The crucial new
point is the consideration of the space and
time ce of the wave functions.

Locality in Space
In the previous discussion the space part of the
wave function of the particles was negleeted.

However exactly the space part is relevant to
the discussion of locality. The complete wave




¥

i function is ¥ = (Yap(r1,r2)) where o and 3 are
spinor indices and r; and ry are vectors in
three-dimensional space.

We suppose that detectors are located within

the two localized regions O; and O,

respectively, well separated from one another.

Quantum correistion describing the
measurements of spins at the localized
detectors is

D(a, 01,b,0;) = (|0 - aPo, ® o - bPo, 1))

Here Py is the projection onto the region O.
: )
Let us consider the case when the wave
function has the form ¥ = Y,pind(r1,r2). One

D(a9 017 b, 02) = 9(019 OQ)D@%% (ﬂ., b)

where the function

9(01,0,) = / 8(r1, 1) Pdrsdes

04 X 04y |

describes correlation of particles in space. Note




that one has

Remark. In relativistic quantum field theory
there is no nonzero strictly localized projection
operator that annihilates the vacuum. It is a
consequence of the Reeh-Schlieder theorem.
Therefore, apparently, the function g(O;, O2)
should be always strictly smaller than 1.

To investigate the property of locality in a
realist theory of hidden variables we will study
whether the quantum correlation can be
represented in the form of classical correlations.

representation
9(01,02)Dpin(a,b) = Ex(a)y(b)
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RBELL'S E QUATION
Cos (oz-(;)=jx(oev\>3[lém)d§(a)

MODIFIED E®QUATIoW (LocAL)

l 4)[*')&;{),2099 @‘F) =jxﬁ() mf;'\)}’(f;&;fy‘) dfé)

SIMPLE MODIFIED EQUATION

| 3 co$ [.(.P ):fx[d,A)g(f; A)‘f(‘o

lxlet, lYylet _‘d?=1 , dpao
S [#&fz)‘&')‘z‘th“&‘ﬁ

I

RELATWVKTIC EGUATIISY 7

[$ it rd) (o,6)= [2 0 b0 At el D ()

w
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TH. 1. Cowsﬂms R E®RUATIOA

——3 CoS [O(_F): jx(dy\)y (F)A> dg’@‘)

A

WHERE 043 ¢1 1S FIXED.

WE WANT To FIVD A SoLUTlol [A,x,y,a@/
Le. 4 SeT A, PuNeTions X (ayA), Y (B)A)
AND MEASURE dg SUCH THAT

| X)) &1, Ialfu\)léf, fﬂ(f(f\)#, djo(f\)ao,
A

IF osg < % tHed THERE EXISTS
A SolUTIo.

T+ \‘J; 9 THEY THERE IS
- Ao SoLUTIoW.
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L. CowsSiDER FTRQUATION

gCos (o(»}%)--— fx(oa,n.;*c(f,‘w df(f\)
A 1

THeN THE SoWTion (A, x, af)
EXISTS IF AND ONLY [F 0“}7 <1

YES | NO
6 z 1

THY v TH2 @ ASYMMETRY 7

A KNREANIKOY | D.ProkiopENKe | J.-4. Larssen
S. hocheAreYV , T.V. E. SA/TOS

g,.g(w,,%) COM/TRIBUTES To TuUE
| EEFICIENCY BF DETECTBRS
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“1 ¥ ' . s . )
In another form: For which constants g we can
find a representation

gcos(t — s) = Exys?

where

zw)] <1, ys(w)] < 1.
Example. If g = 1/2 then there exists such a

representation:
1 27 dw
fz-cos(t —§) = /(; cos(t — w) cos(s — w)%— .
Problem of locality in quantum
" mechanics and theory of stochastic
processes.
Which functions f(t,s) can be represented in
the form

;f(t’ 5) = Ex:y,
Restrictions on Z;, Ys'

fty, - tn) = By, .2,

Note that if we set g(©1,0a) =1 as it was




O
SUMMARY.

; . BELL'S INEQUALITIES DO woT
INCLUDE SPACETIME VARIABLES.
THEREFORE THEY DO No7 DJ/RECTLY

RELEVANT TO THE PROBLEM OF LOCALITY
OF QUANTUM THEORY.

MODIFIED EQRUATIoN
86 DI* 0l )apy
A

EXPERIMENTAL STUDY ©F SPATIAL DEPEW DG CE

e RELATIVISTIC PARTICLES . PHOTONS , DIRAC,

No FACTORIZATIoN OF WAVE FUNCTIo&
INTO THE SPIN AND SPACETIME PARTS.

NEW EQUATION

8 (k0 28: 6 = o) 645 (3

« PASSIVE SYSTEMS: VLADIMIRSY V.§.

LOCALITY (4 SPACE TIME FOR
CLASSICAL CHANNELS




s QUANTUM FIELD THEORY -
~LOCAL THEORY :

L (-F (x) ({[g)] :Oé CX-—})24 )

o ENTANGLED STATES (¥ SPACETIME

¢ QUANTUM [N FORMATION |V SPACET/ME,

( CLASSICAL THEORY OF [VFORMATIO [&/
SpAcE nmE . RELATIVISTIC [ANFORMAT/04

THEOR V)
QUANTUM CRYPTOGRAPHY , TELEPIRTAT)u,

CCMPUTING ... I SPACETIME

QlspecutaTion. priVCIPLE

IN QUANTUM PHYSICS ONLY SUCKH STATES
AyD> OBSERVABLES EXIST WHICH SATISEY

THE REQUIREMENT OF E"VS'TF!{/,‘VBELL,
LocAL REALISA . :

Wl iy Pi 95 =] 6, 0.5, GIdlp Oy

(" NN COMMUTATIVE SPECTRAL THEORE M)

o QUAYTUN |8FoRAATICY /¥ CURVED
SPACETIME AwD PHYSILS OF BLACK HOLES,



]

-

 QUANTUM  MUTUAL I¥FoRMATION

| %AB - O//'/A ‘(@ 7/5

§as

)074;7};(5 Spn ’7 §’5=TV;T{A,§AB
S(A:E’>:T\“ [SDAB é"é gﬁs> —
- Tv (?,4 by S’A) - v @’s (g 0 )

Descrifes How much
L'u-{érm#ah §y§‘7‘e/&§' A ara R

dave Cn Comumon
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cyumMMAR Y -
Qe DUCTION POSTULATE

RUANTUM compUTER

QUANTU M CIRCUIT {WD{V,,..,I/,#)UJ'

SHog FACTORING AL6oR/TH T

NP - COMPLETE PROBLEMS

VMR , 10N TRAPS, ATOM,. ..

EPR PAIR ./EA/TA-AIGLED STATES

QUANTUM TELEPoRTAT/ON
BeLL'S THEOREM

SPACE DEPEWDPEMCE OF
ENTANGLED STATES




