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Introduction - Main Motivation

Reparametrization-covariant (generally-covariant) inte-
gration measure densities:

e Standard Riemannian: /=g with g = det||gu||

e Modified non-Riemannian: .
CD(LP) = -DlTsﬂl...uDeil---iuauﬁoh ° . GNDSOZD

Models involving Gravity with modified measure, or both
standard and modified - Two-Measure Gravitational Mod-
els :

S = /dDmd>(<p) L1 +/dDa:\/_-—gL2

EYI | 1 : :
L1 =eMr [—;R(g) — Egﬂ"auqsa,,qs + (Higgs) + (fermions)]

" Crucial role played by the new "“geometric” field:
¢(z) = %2 — determined only through the matter fields

locally (i.e., without gravitational interaction).

Two-measure gravity models address various basic prob-
lems and provide possible solutions:

e Scaleinvariance and its dynamical breakdown; Spon-
taneous generation of dimensionfull fundamental scales;

e Cosmological constant problem;

e Geometric origin of fermionic families.




Bosonic Strings with a Modified World-Sheet
Integration Measure

Standard Polyakov-type bosonic string action:

(6%, 06 =(r,0) a,b=0,1 p,vr=0,1,...,D—1

veb — World-sheet Riemannian metric, v = det ||va|[;

T — string tension, a dimensionfull quantity introduced
ad hoc.

Egs. of motion w.r.t. y* :

1 :
Tab = (aa,XuabXV - E’Yab’YCdacX”aqu) Gl‘y(X) b O

Eqgs. of motion w.r.t. X* :

1
\/__766, (V=710 XH*) + 4%8, X* 8, X TH, = 0

where %, = 2GF* (8,Grr + 02Grv — 8xG,») (affine con-

nection for external metric).




Idea: Replacé v/—v with a new reparametrization-covariant
world-sheet integration measure density ®(p)

1 o L
P(p) = gsiieabaaw’f?bw’ = €4j¢'0sp’ .

with two additional world-sheet scalars ¢* (i = 1,2), i.e.,
naively d2c /=y = d?c ®(p) = dp* A dp?.

However, the naively generalized action

1
S =% / 2o D(0)7%8u X 8, X" G (X)
has a problem — egs. of motion w.r.t. % lead to an

unacceptable condition: ®(p) 8, X*HX G, (X) = 0.

Remedy: Consider topological (total-derivative) terms
w.r.t. standard Riemannian world-sheet integration mea-
sure. Upon measure replacement /—y — ®P(¢) the for-
mer are not any more topological — they will contrlbute
nontrivially to the eqgs. of motion. For instance:

ab

/d2a\/—-—7R—>/dza¢(¢)R , R—-2\/_

where R is scalar curvature w.r.t. D = 2 spin-connection

(Bawp — Opwa)

wi = e o, behaves as world-sheet Abelian gauge

a

field.




Modified Bosonic String Action:

eab

QMFab(A)]
where F,, = 0,Ap — OpAq. This action is invariant under
diffeomorphisms in ¢-target space supplemented with
a conformal transformation of ~,, — “®-extended Weyl
transformation’ .

1
S =— /d2a D(p) [E'y“baaX“@bX”G,w —

o — " =¢"P) , Yo — Yoy = JVab
where J = det|| ||

Eqgs. of motion w.r.t. ¢*:

ecd

V=

%00 0, (Y0 X 03 XV G (X)) — F.g) =0

implying (provided ®(y) # 0) :
cd

3
Feg = M (= const)
Nl

Eqs. of motion w.r.t. ~%:

’YCdachadXVG”y (X) -

1 cd
= BaX’“@bX"G,w(X) - _7ab\/—

Both egs. of motion above yield M = 0 and:

1
T | = (0.XFOXY — §7ab7°d8cX“8dX”)GW(X) =0

Pol

which is the same as in standard Polyakov-type formu-
lation.

Feq=0




Egs. of motion w.r.t. Xx# :

Oa (D10, XH) + D8, X* 0, X ¥, =

where r‘fj,\ = ZGH* (8,Gx + )Gy — 0<Gyy) is the affine
connection corresponding to the external space-time met-
ric G.

Most importantly, €gs. of motion w.r.t. A, vield:

which can be integrated to vield a spontaneously in-
duced string tension:

P(p)
V="
We may extend the model by putting point-like charges

on the world-sheet coupled to the auxiliary gauge field
Aq. In the “static” gauge:

S — Sstring - Z ez/dTAO(T7 O'z)

Then the eq. of motion w.r.t. Ao becomes:

=const=1T

‘ 30(3;(__90’3)—Zei5(a—0i)=0

It resembles a D = 2 Gauss law for the variable dynami-
cally induced string tension T = ®(p)/+/—7 identified as
a world-sheet electric field strenght.




In fact, it follows directly from the explicit form of the
modified-measure string action with charge-current j¢
on the string:

5= [&ol.. 1“’(“’) P Fa( AN + [ Aud

that the canonically conJugated to A; momentum, i.e.,
the world-sheet electric field strenght is indeed:

WAIEEz—a—ﬁ—ch((P)

0A1 v
~and the egs. of motion w.r.t. auxiliary gauge field A,
look exactly as D = 2 Maxwell egs.:

b
e:“babE +ja =0 , E = (90)

Ve




Canonical Hamiltonian Treatment

sab

2\/:—’)7Fab(A)]
—Zei/d'er(T, 0;)

Introducing canonical momenta:

1
S = — /d20' CD(QO) [§7ab6aX“0bX”G,uu -

.1 . s 8ab
¥ = —£ij0p¢p’ [57 b0u X 0p X" Gy — ﬁFa,,(A)]
b .
TA, = E = -—(\/%2 , P[J, E— __(b((P) (,YOOXV + ’YOlaO'XU) Guy

the canonical Hamiltonian H = }_ , AaF4 turns out to be
linear combination of first-class constraints only. Part of
the latter resemble the constraints in the ordinary string
case my» = 0 and

1 P P
=GP (=L £ GuOe X*) (= £ G20, X)) =
Te = 2GM(5 £ Gun0o X™) (- £ Giade X7) =0

where in the last Virasoro constraints the dynamical
string tension E appears instead of the ad hoc constant
tension.

The rest of the Hamiltonian constraints are w4, = 0,

O F — Zei5(0' —0;) =0

]

i.e., the D = 2 "“Gauss law constraint for the dynamical
string tension,




and constraints involving only the measure-density fields:

%
)

Ol

The last two constraints span a closed Poisson-bracket
algebra:

Bagaiwf =0 , =0

{Bop'nf (), Bop'mf () } =

20,0'n?(0)0,6(0c — 0’) + 8, (854" ! ?)6(o —a’)
(a centerless Virasoro algebra), and:
cp

(0r'nt(0), 520} = —0(52,

Therefore, they |mply that the measure-density scalars

)o(o — o).

gai are pure-gauge degrees of freedom.
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Non-Abelian Generalization. Notice the following iden-
tity in D = 2 involving Abelian gauge field A,:

1 1
> ,.__fyeabFab(A) = \/EFab(A)ch(A)’Yac’de

This suggests the proper extension of the modified-
measure bosonic string model by introducing a non-
Abelian auxiliary gauge field (here we take for simplicity
flat external metric G = nw) :

S = ——/dza D () [%'y“baaX”aqu —

—\/ ';' Tr(Fap(A) Fea(A))y*v>)

—_ / 2o & (p) [%vabaawabxu _

1
———\/Tr A A
m\/T (Fo1(A)Fo1(A))]

The above action is again invariant under the ®-extended

Wey! (conformal) symmetry (¢* = ¢'* = ¢'"(¢) , Yap —
a 13

iy = Yab det|| ().

11




Notice that the “square-root” Yang-Mills action (with
the regular Riemannian-metric integration measure):

[ & m\/ T (Fu(A) Faa ) o
= /dzo' v Tr(Fo1(A)Fo1(A))

is a “topological”’ action similarly to the D = 3 Chern-
Simmons action (i.e., it is metric-independent).

We can also add non-Abelian “color” point-like charges
on the world-sheet with current ;¢ coupled to the non-
Abelian auxiliary gauge field A, :

S =— / d20 CD(go)[—;—'y“baaX“abX“ _

——\/—1_—_;\/TT(F01(A)F01(A))] + /TT (Aaj?)

where in the “static” gauge :

/ Tr (Aqj®) = — ZTr Ci / drAo(r,0%)

12




Notice that the “square-root” Yang-Mills action (with
the regular Riemannian-metric integration measure):

[ & «/37\/ T (P Fua( ) )y
= /d2o' v Tr(Fo1(A)Fo1(A))

is a “topological”’ action similarly to the D = 3 Chern-
Simmons action (i.e., it is metric-independent).

We can also add non-Abelian “color” point-like charges
on the world-sheet with current ;¢ coupled to the non-
Abelian auxiliary gauge field A, :

S =— /dza D (p) [—;—7“b3aX“8qu —

——\/—}_;’;\/TT(FM(A)FOI(A))] + /TT (Aaj?)

where in the “static” gauge :

/Tr (Ayj%) = —ZTT Ci/dTAO(TaO'i)
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Eas. of motion w.r.t. ¢ :

1 1
E,chachadX“ - ﬁ\/TT(FOIFOI) =M (: Const)

Egs. of motion w.r.t. ~% :

: 1
Top = 0. XH 0, X, — —\/_:’)I—'yaé\/Tr(Fo1F01) =0
As in the Abelian case the above eqs. imply M = 0 and
the Polyakov-type eq.:

1
Tw |, = (8. XH 8 X" — -Q-%bfycdacX#adX”)GW(X) =0

Po

Eas. of motion w.r.t. auxiliary gauge field 4, — again
resemble the D = 2 non-Abelian YM eqgs.:

¥V, E 4 j°=0
where:

Vo€ =0 +i[As, E] , E=ma, = P(p) Fo1
V=7 \/Tr(Fo1Fo1)

Here £ is the non-Abelian electric field-strength — the
canonically conjugated momentum w4, of Aj;, whose
norm is the dynamical string tension:

T=|E|=o(p)/V—r

13




The eq. for the dynamical string'v tension following from
Vo€ + €43 = 0 is:
Tr (ijb) _

D ()
) + €q =0
V= e (ry)

Oa(

In the absence of external charges (3¢ = 0) :
T = d(p)/+/—7 = const

The X#-eqs. of motion 8, (P(p)¥*8hX*) = 0 (here
Gu = nu for simplicity) can be rewritten in the con-
formal gauge /=—yy% = n*® as:

P - N y
—‘—",_(SO) BaﬁaX“ - jaaaX” =0 ) ¢ = Tr (FO]J )
K Tr (Fgl)
For static charges j© = — Y. &6(0 — 03) :
| ~ -~ Tr(Fo1C;
T = (o) =T+ 380 — ) , & = LG
i Tr (F021) 0=0;

| 0%0, X* =0
To*0uX* + () _&b(o —0))0X* =0 = 5 xu| =g

O=0;

Conclusion. The modified-measure (closed) string with
N point-like (“color”) charges on it is equivalent to N
chain-wise connected regular open string segments with
Neumann boundary conditions.

14




Classical Mechanism of “Color” Confinement

Recall that the modified string action vields the fol-
lowing eq. 8,€ 4+ i[A1,E] + j° = 0 for the dynami-
cal string tension (T = |€] = P(v)/+/—7), Which in the
gauge A; = 0 reads: |

£ = P(p) Fo1
V=Y /Tr(ForFo1)

Note. This eq. of motion w.r.t. Ag is in fact Hamilto-
nian first-class constraint — non-Abelian D = 2 “Gauss
law” as in ordinary YM.

8, —) Cib(c—0;) =0,

Let us consider the case of closed modified string with
positions of the “color” charges 0 < o1 <...< oy < 2.
Then, integrating the “Gauss law" constraint we obtain:

ZC'z' =0 , &iy1=8&-1,+C;
i
where &; ;41 = &€ for 0; < 0 < 0i41.

Conclusion. The only (classically) admissable configu-

ration of “color” point-like charges coupled to a modified-
measure closed bosonic string is the one with zero total

“color” charge. The dynamically generated string ten-

sion is constant along each open string segment con-

necting two neighboring “color” charges with jumps at

the ends of the segments proportional to the magnitude

of the “end-point"” charges.

15




Superstrings with a Modified Measure

Modified-measure Green-Schwarz superstring action:

8ab

1
S= [ o o) -3y NN, + ——
(for simplicity we take now G, = n.) and where:

1 . .
P(p) = seijeBup'Ope’ , Mh = 8.X" + i6040u0

(M4(89,8,0) + S Fun(A))]

Here 8 = (6*) (a« = 1,...,16) denotes 16-dimensional
Majorana-Weyl spinor in the embedding D =10 space-
time; o = ((6#)qp) indicate the upper diagonal 16 x 16

blocks of the 32 x 32 matrices C~1I"'* where M and C
are the D =10 Dirac and charge-conjugation matrices,
respectively.

- Explicit invariance under space—tlme supersymmetry trans-
formations:

00 =€ , O0.X* = —i(ec”0)
ScAq = i(ec,8) <8aX“ + %90“(%9)

In particular, the algebra of supersymmetry transforma-
tions closes on A, up to a gauge transformation:

{80 8} Aa = Bu(~ 3 (€160 (c20,9))

16




Hamiltonian Treatment. The canonical Hamiltonian
is again linear combination of constraints only (now
first- and second-class mixture).

The first part of (first- and second-class) constraints is
the same as in the ordinary Green-Schwarz superstring
case upon replacing the constant ad hoc string tension
by the dynamical tension E = ®(p)/+/—7 :

1 P
Ty =0 7:Ez(g"E'X')2=D

Ty = [-7;- + B(X' — 2i0060)]? —0'D = 0
iD =Py — (P, — ENy ,)ifc* =0

The last one is Lorentz non-covariant mixture of first-
and second class constraints.

NI

- Solving the above problem — a long history of various
approaches to super-Poincare covariant treatment of
Green-Schwarz superstrings (E.N., Pacheva and Solomon;
Galperin and Sokatchev; Cederwal; Bandos, Sorokin,
Pasti, Tonin, Volkov; Berkovits; ...).

The second part of (first-class) constraint involving E
and ¢' is the same as in the modified-measure bosonic
String case, i.e., "Gauss law" constraint for E and im-
plying ¢' to be pure-gauge degrees of freedom.

17




Bosonic Branes with Modified-Measure

Ordinary p-brane action in Polyakov-type formulation:

S = —%/’dp"'la V= [1P0:. X X" G (X) — A(p — 1)]

Egs. of motion w.r.t. % :

1 N
Tp = <6aX“6bX” - -2-’7ab’70dacX“8dXV) Guu + 'Yab'é'(p -1)=0

The latter when p # 1 imply:
A'Yab == 6aX“abXVGI_u/
or, equivalently:

1
pt+1

T = (aaxua,,x" - %b»ycdacX#adX") G =0

Note. Using Avyep = 8.X*8X"GL,, the Polyakov-type
brane action is on-shell equivalent to the Nambu-Goto-
type brane action:

S=—-TAN% [ d&tlo\/—det||8.X"8X" G|

18




Modified Brane Action:

1 1
S =— /dp+1a D () [—7“”8 XPopXVGu(X) + —=2(A)]
27 ™ ’ V=T
+ / dPtlo L(A)
where the modified measure density is:
1 . .
CD(CP) = E’il---ip+1€a1map+1601§021 e a¢1p+1 SOZPH

(p+1)!

Q(A) indicates a topological density given in terms of
some auxiliary gauge/matter fields A’ living on the world-
volume, “topological” meaning that:

02 02 : :

AT Oa (68aAI> = 0 identically
, _ o2 I
i.e. 02(A) = 9, (aaaAI(SA )

L(A) describes possible coupling of the auxiliary fields
Al to external “currents” on the brane world-volume.

The requirement for Q2(A) to be a topological density is
dictated by the requirement that the modified-measure
brane action (in the absence of the last “gauge/matter”
term) reproduces the ordinary p-brane eqs. of motion
apart from the brane tension T = ®(¢)//—7 being now
an additional dynamical degree of freedom.

19




Examples of Topological Densities for the Auxiliary
Fields:

eal...a,+1

p+1
where A,,.q, IS rank p antisymmetric tensor (Abelian)
gauge field.

Q=— Fa1---ap+1 (A) ) Fa1-~-ap+1(A) - (p + 1)a[a1Aa2...ap+1]

More generally, for p+ 1 =rs :

1
— a11...A1p...Ag1...Q,
Q — ;;6 11 1r 81 '"'Fall.“alr s e Fa,l_”a"‘

We may also use non-Abelian auxiliary gauge fields as in
the string case. For instance, when p = 3 we may take:

Q= %sabcd Tr (Fup(A) Faa(A))
or, more generally, for p+4+ 1 = 2q :
1
\l Q= z—qealbl“‘aqb" Tr (Fahb1 ... Fa,,bq)
where Fy(A) = 0,4 — OpAc + i[Aq, Ap).

20




Egs. of motion w.r.t. ¢ :

1 1
—v0. XH*0; XVGy + —— — —
2’7 i X Guv + \/—_’YQ(A) M = const

Egs. of motion w.r.t. 4% (assuming that [dPtlc L(A)
does not depend on «,, — true e.g. if it describes cou-
pling of the auxiliary (gauge) fields A to charged lower-
dimensional branes) :

8a,X”3bXVG”y + Tab Q(A) — O

V=
Both eqgs. above imply:
2M 2M
Q(A) _ V=7 8aXﬂabXVG“V = Yab
p—1 p—1
1
&,X“BbX”GW - P + l’yab’YCdacX“adeGuy =0

- The last two eqgs. reproduce two of the ordinary brane
eqgs. of motion in the standard Polyakov-type formula-
tion.

Eqs. of motion w.r.t. auxiliary (gauge) fields Al — these
are the egs. determining the dynamical brane tension

T=®(p)/V—:

b o
X (w)) :
where j; = 2% — 8,(32%;) is the corresponding “current”
coupled to Al

+4i=0

21




For example, take Q(A) = “‘;"1"’ Fa,.0,.(A) and:

/ Ptlo L(A) = / FPtlo Ag,. 0, 3%

Here j%% js a current of charged (p — 1)-sub-branes B;

embedded via ¢ = o} (u) with parameters u = (u*)a=0,.. p-1
do;
jOt = 1. a,, 9i s(p+1)
E ez/dpu e* aual"'a 5p (o — gi(u))

The eq. for the dynamical brane tension T' = ®(¢)//—7
becomes:

aa(j(:?) + Y eNP =0

where N’éi) is the normal vector w.r.t. world-hypersurface
of the (p — 1)-sub-brane B;:

N | 1 oo} o}
NS = —ean /B Py ST ST (g - o)

‘The X*-eqs. of motion 8, (P(p)y®8XH*) = 0 (taking
for simplicity G, = nu.) become:

® N
(‘P) ( /—,yaba Xu) zzz eiNcSz),yababxﬂ — 0

which implies (8xy — normal derivative w.r.t. (p—1)-sub-
brane B;): .

0 (VEAAPOXF) =0, O =0
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Conclusions

Modifying of world-sheet (world-volume) integration mea-
sure — significantly affects string and brane dynamics.

e Acceptable dynamics naturally requires the intro-
duction of auxiliary world-sheet gauge field (world-
volume p-form tensor gauge field).

e String/brane tension - not a constant scale given ad
hoc, but rather an additional dynamical degree of
freedom beyond the ordinary string/brane degrees
of freedom. »

e The dynamical string/brane tension — physical mean-
ing of an electric field strenght for the auxiliary
gauge field.

e The dynamical string/brane tension obeys “Gauss
law"” constraint equation and may be nontrivially
variable in the presence of point-like charges (on the
string world-sheet) or charged lower-dimensional branes
(on the p-brane world-volume).

e Modified-measure string/brane models provide sim-
ple classical mechanisms for confinement of point-
like “color” charges or charged lower-dimensional
branes due to variable dynamical tension.
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